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Introduction

Coded modulation is the collective term for all techniques which

combine and jointly optimize channel coding and modulation for

digital transmission.

Trellis coded modulation (TCM) : It consists in an expanding

the input bits by a binary convolutional code and partitioning the

used signal constellation into smaller subsets with a larger

intra-set distance.

Integer coded modulation (ICM) : A type of block coded

modulation - each point of the signal constellation corresponds

to a symbol of ZA and coded by a code over ZA.

Others : Coded modulation based on Gaussian and algebraic

integers.
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Integer codes

Integer codes have proved themselves to be very effective when

they are applied to modulation schemes usually generating errors of

a given type, that is, modulation schemes where all possible errors

are not equally probable, and some of them occur more often. For

example, M-QAM and M-PSK modulations fall in this case.

Definition . Let C be an [n, k] code over the ring, ZA, of integers

modulo A. We say that C is a t-multiple (±e1,±e2, . . . ,±es)-error

correctable code if it can correct up to t errors with values from the

set {±e1,±e2, . . . ,±es} which are occurred in a codeword.
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Integer codes

Integer codes have proved themselves to be very effective when

they are applied to modulation schemes usually generating errors of

a given type, that is, modulation schemes where all possible errors

are not equally probable, and some of them occur more often. For

example, M-QAM and M-PSK modulations fall in this case.

Definition . Let C be an [n, k] code over the ring, ZA, of integers

modulo A. We say that C is a t-multiple (±e1,±e2, . . . ,±es)-error

correctable code if it can correct up to t errors with values from the

set {±e1,±e2, . . . ,±es} which are occurred in a codeword.

Single error correctable codes are studied in our previous papers.

In this talk we address codes over integer rings which are capable

of correcting up to two errors with values ±1.
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Bounds on the size of alphabet

Proposition . Let C be an [n, k] code over the ring ZA. If C is a

double ±1-error correctable code, then the cardinality, A, of the ring

satisfies the inequalities:

for k = n − 1

A ≥ 2n2 + 1;

for k = n − 2

A ≥
√

2n2 + 1

The codes which achieve the above bounds are called perfect.
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Double ±1-error correctable codes 1

Let C be an [n, k] code over the integer ring ZA with a parity-check

matrix

H = (h1,h2, . . . ,hn),

where the columns are nonzero and of length n − k, i.e. one

(k = n − 1) or two (k = n − 2).

The condition C is double ±1-error correctable code

is equivalent to

hi 6= ±hj , (hi ± hj) 6= ±(hl ± hm), for any i 6= j.
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Equivalences

We may assume that the first row of H contains only elements of

ZA which are ≤ A/2, arranged in a nondecreasing order since the

multiplication of column by −1 and permutations of columns

transform C into an equivalent code.
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Equivalences

We may assume that the first row of H contains only elements of

ZA which are ≤ A/2, arranged in a nondecreasing order since the

multiplication of column by −1 and permutations of columns

transform C into an equivalent code.

The multiplication of a row of H by an invertible element of ZA does

not change the code. Hence if there exists an invertible entry of H

we may assume that there is 1 in the first row. Otherwise there is an

element that divide A, and all others have g.c.d. with A greater than

one.
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Constructions

Therefore we may assume that the parity check matrix of [n, n − 2]

double ±1-error correctable code has the form

H =





1 0 h13 . . . h1n

0 1 h23 . . . h2n



 or H =





1 h12 h13 . . . h1n

0 a h23 . . . h2n



 ,

where a | A.

In the case k = n − 1 the parity-check matrix is 1 × n and has the

form H = (1 h2 . . . hn). Such codes require large cardinality, A, of

the alphabet (according to Proposition 1) and are not much useful.

Nevertheless a quite simple [2, 1] code over Z9 with H = (13)

demonstrates very good performance applied to 64-QAM.
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Constructions 2

One of our recent goals is to describe up to equivalence the perfect

double ±1-error correctable codes, or codes of minimum possible

cardinality A, for small code length. We have not yet completed this

work, but we have already collected many examples of codes with

small length and reasonable alphabet cardinality.

Unfortunately, if a code with a given parity-check matrix is double

±1-error correctable for a given alphabet ZA it may not preserve

this property as a code over a larger cardinality of the alphabet.
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Applications

Another task is to study the potential of double error correcting

codes for applications

The consider code are very effective when they are used for

improving the performance of M-QAM modulation.

The example below demonstrates a realization of such an

application.

From practical point of view the codes over Z2m or Z2m+1 are more

interesting since they enable the standard 22m-QAM constellations

to be used.
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An example of application to 64-QAM

Consider [4, 2] code C over Z9 with a parity-check matrix H and the

corresponding generator matrix G:

H =





5 3 1 0

2 3 0 1



 G =





1 0 4 7

0 1 6 6



 .

The code is double ±1-error correctable

Each point of the constellation is indexed by a pair (x, y) of nonzero

elements of an integer ring (in this example Z9)

The encoding/decoding procedure is independently carried out on

each of the axes.
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Indexing a 64-QAM constellation
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The encoding procedure

Any incoming block of 6 bits is split into two 3-bit groups which are

transformed into decimal integers. By adding 1 to each of them we

obtain a pair (a, b) of nonzero elements of Z9. Each of the

sequences a1, a2, . . ., resp. b1, b2, . . . , of the first, resp. the second,

coordinates is encoded by the code C. The encoding rule is

(a2i−1, a2i) −→ (a2i−1, a2i, 4a2i−1 + 6a2i, 7a2i−1 + 6a2i),

(3a, a) −→ (3a, a, 1, 1),

where the operations are in Z9.

We replace the check bits with 1 since their values have to be also

nonzero. Note that

4a2i−1 + 6a2i = 0 ⇔ 7a2i−1 + 6a2i = 0 ⇔ a2i−1 = 3a2i.
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The decoding procedures

At the receiver the detection procedure gives as an output a vector

v = (v1, v2, v3, v4), vj ∈ Z
∗

9, for each of the axes. The decoder

proceeds both vectors in parallel following the standard syndrome

decoding algorithm giving at the output a pair (u1, u2). The only

peculiarity is that after calculating the syndrome vector s = vH the

decoder uses the syndrome-error table two times: for s and for

s− (1, 1). In the latter case if the output pair (u1, u2) does not satisfy

u1 = 3u2, the result is discarded. Also, if s does not match to any

vector in the table, the decoder gives u1 = v1 and u2 = v2.
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Table of syndromes

Error vector Syndrome Error vector Syndrome

1 0 0 0 (5,2) -1 0 0 0 (4,7)

1 1 0 0 (8,5) -1 -1 0 0 (1,4)

1 -1 0 0 (2,8) -1 1 0 0 (7,1)

1 0 1 0 (6,2) -1 0 -1 0 (3,7)

1 0 -1 0 (4,2) -1 0 1 0 (5,7)

1 0 0 1 (5,3) -1 0 0 -1 (4,6)

1 0 0 -1 (5,1) -1 0 0 1 (4,8)

0 1 0 0 (3,3) 0 -1 0 0 (6,6)

0 1 1 0 (4,3) 0 -1 -1 0 (5,6)

0 1 -1 0 (2,3) 0 -1 1 0 (7,6)

0 1 0 1 (3,4) 0 -1 0 -1 (6,5)

0 1 0 -1 (3,2) 0 -1 0 1 (6,8)

0 0 1 0 (1,0) 0 0 -1 0 (8,0)

0 0 1 1 (1,1) 0 0 -1 -1 (8,8)

0 0 1 -1 (1,8) 0 0 -1 1 (8,1)

0 0 0 1 (0,1) 0 0 0 -1 (0,8)
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64-QAM–Grey and [4, 2] code over Z9.
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Conclusions

This talk should be considered as a part of our recent efforts to

popularize integer codes as an effective tool for code modulation.

Integer coding decreases the error rate of the discrete channel and

it is independent from the channel coding. Integer codes may thus

be combined with various channel coding schemes.
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The end

Thank You for Attention!
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